TabNet: Attentive Interpretable Tabular Learning
نویسندگان
چکیده
We propose a novel high-performance and interpretable canonical deep tabular data learning architecture, TabNet. TabNet uses sequential attention to choose which features reason from at each decision step, enabling interpretability more efficient as the capacity is used for most salient features. demonstrate that outperforms other variants on wide range of non-performance-saturated datasets yields feature attributions plus insights into its global behavior. Finally, we self-supervised data, significantly improving performance when unlabeled abundant.
منابع مشابه
Programmatically Interpretable Reinforcement Learning
We study the problem of generating interpretable and verifiable policies through reinforcement learning. Unlike the popular Deep Reinforcement Learning (DRL) paradigm, in which the policy is represented by a neural network, the aim in Programmatically Interpretable Reinforcement Learning (PIRL) is to find a policy that can be represented in a high-level programming language. Such programmatic p...
متن کاملInterpretable Active Learning
Active learning has long been a topic of study in machine learning. However, as increasingly complex and opaque models have become standard practice, the process of active learning, too, has become more opaque. There has been little investigation into interpreting what specific trends and patterns an active learning strategy may be exploring. This work expands on the Local Interpretable Model-a...
متن کاملSparse Tabular Multiagent Q-learning
Multiagent learning problems can in principle be solved by treating the joint actions of the agents as single actions and applying singleagent Q-learning. However, the number of joint actions is exponential in the number of agents, rendering this approach infeasible for most problems. In this paper we investigate a sparse representation of the Q-function by only considering the joint actions in...
متن کاملA NOTE TO INTERPRETABLE FUZZY MODELS AND THEIR LEARNING
In this paper we turn the attention to a well developed theory of fuzzy/lin-guis-tic models that are interpretable and, moreover, can be learned from the data.We present four different situations demonstrating both interpretability as well as learning abilities of these models.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the ... AAAI Conference on Artificial Intelligence
سال: 2021
ISSN: ['2159-5399', '2374-3468']
DOI: https://doi.org/10.1609/aaai.v35i8.16826